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Fixed scale transformation for Ising and Potts clusters 
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i DipaRimento di Fisica, Universiti di Roma, Piazz.de Aldo Mom, 00185 Roma, Italy 

Received 25 June 1990 

Abstract. The fractal dimension of k ing  and Pons clusters are determined via the fixed 
scale transformation approach, which epxloits both the self-similarity and the dynamical 
invariance of these systems at criticality. The results are easily extended to droplets. A 
discussion of the interrelationships between the present approach and renormalization 
group methods as well as Glauber-type dynamics is provided. 

1. Introduction 

The fixed scale transformation, (FST), a novel technique [ l ,  21 introduced for computing 
the fractal dimension of Laplacian growth clusters, is applied here to the equilibrium 
problem of king clusters at criticality, in two dimensions. The method yields very 
good quantitative agreement with the known exact results. The same method has also 
recently been applied to the problem of percolation clusters and to invasion percolation, 
also with very good results [3,4]. 

The fractal dimension D of the king clusters, i.e. the connected clusters of sites 
with identical spins, has been a controversial issue for a long time [5 ,6  and references 
therein]. Recently it was shown [5,7] that the exponents describing king clusters at 
the critical point are those of the dilute q = 1 Potts model at its tricritical point, with 
the exact value D =%= 1.947 in good agreement with numerical estimates. 

Here we will undertake a direct evaluation of the fractal dimension of king clusters 
exploiting the scale invariance of the critical fluctuations and making explicit use of 
the statistical self-similarity under translation. It is an easy generalization to treat the 
q-state Potts model, with 2 s  q S 4  with our method, and we make explicit predictions 
for the fractal dimension of the q-state Potts clusters at criticality. To our knowledge, 
no exact results are available for q = 3 ,4  but our predictions are very close, numerically, 
to D =2-xH,  where xH is the magnetic exponent at the tricritical point of the dilute 
q = 2 and q = 3 Potts models. We also show that the Ising and Potts ‘droplets’ [6, 8 , 9 ]  
can be defined in a very natural way in this approach, and we obtain reasonable 
estimates of the fractal dimensions. We also show that the Ising and Potts ‘droplets’ 
[6, 8,9]  can be defined in a very natural way in this approach, and we estimate their 
fractal dimension, obtaining reasonable, though slower convergence to the exact result. 

The fixed scale transformation approach affords a new and accurate method for 
the determination of critical exponents. The FST was first developed to treat fractal 
growth models, hut the basic ideas continue to apply here. Fractal growth models are 
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‘intrinsically critical’, in the sense that they give rise to self-similar structures without 
the need to tune a parameter to its critical value, in contrast to equilibrium statistical 
models, such as the king model, where scale invariance of the fluctuations arises only 
at a special value of the couplings, namely, the critical point. Although in many 
instances the value of the critical couplings is known exactly from, say, duality relations, 
it is much more difficult to obtain reliable values for the critical exponents, or, the 
anomalous dimensions of the critical fluctuations. The FST provides a bridge between 
such non-universal quantities as the strength of the critical couplings or a particular 
lattice topology on the one hand and universal anomalous dimensions, on the other. 

The FST method in the present context may be summarized as follows. The critical 
clusters are modelled by an appropriate ensemble of random Cantor sets, the ensemble 
being characterized by a scale invariant conditional correlation. At equilibrium, the 
conditional correlation functions at a generic length scale are determined from the 
fixed point of the fixed scale transformation, evaluated at the critical value of the 
couplings. Invariance under the FST corresponds to the requirement of translational 
invariance. The requirement that the equilibrium correlations be translationally 
invariant, as well as self-similar under scale change, should be compared with the 
similar requirement that an irreversible aggregation model be invariant under further 
growth [1,2]. 

In the present scheme, the propagation of correlations between points of the 
cluster is treated as a sum over products of short-range correlations over different 
paths. It should be pointed out (also see section 5 )  that this is a convergent scheme 
which can be improved order by order in the length of the paths, or the size of the 
clusters, contributing to the relevant correlations. In the case of irreversible aggregation 
(or percolation considered as a growth process), convergence is established [ I ,  2 , 3 ]  
in the order of the aggregation process, i.e. the number of particles added. 

The paper is organized as follows. In section 2, the FST is applied to the king 
model at criticality and the fractal dimension of the king clusters is computed. In 
section 3, this is generalized to the Potts model. In section 4, the related problem of 
king and Potts droplets is treated. In section 5 ,  we provide a discussion of certain 
common features between the renormalization group and the present method and also 
demonstrate its close relationship to a dynamical approach. 
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2. The fixed scale transformation applied to lsing clusters 

Consider a segment of the intersection of the Ising cluster with a strip at any length 
scale 2-”. The strip will consist of empty or occupied boxes, nesting inside one another 
in a self-similar manner. In particular, there will be an invariant probability C ,  (C , )  
that under fine-graining by 2, a box belonging to the intersection set will reveal one 
(two) occupied box(es) at the next level (figure 1) .  These fine-graining configurations 
will be called type 1 and 2 respectively. The self-similarity dimension of the intersection 
set is now clearly given by In( C ,  + 2C2)/ln 2 with C ,  + C, = 1. For a detailed discussion 
of this construction see [2]. 

Now consider a translation of this strip by one ‘lattice constant’ (at the given length 
scale) parallel to the original one. The distribution C :  ( C ; )  should be the same on the 
intersection set thus obtained as on the previous one. We will proceed to build a 
transformation matrix that connects Ci to C, and look for its fixed point. TO do  this, 
we will interpret ‘growth’ in this context as the propagation of correlations at criticality. 
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Figure 1. Under fine graining by a factor of 2, a cell belonping to the interaction set reveals 
configurations of type 1 or 2, with probabilities C , ,  C,. 

It  is important to note that the fractal object in which we are interested is described 
in terms of a new set of lattice gas variables whose statistics are not the same as those 
of the original spin system, although determined by it in a way we will discuss later. 
Since we are considering the system at a generic length scale, an 'occupied site' is a 
region at that particular length scale containing a connected part of the cluster of 
up-spins. Conversely, an 'empty site' may contain any number of up-spins which, 
however are bounded away from the connected cluster by a number of down-spins. 
Thus in this coarse-grained picture, the absence of a bond will signal an 'empty' site 
at the other end and not a down-spin, which is important for the correct weighting of 
the ensuing configurations. 

That the statistics remain invariant under scale change follows from the fact that 
the underlying spin system exhibits self-similarity at the critical temperature where the 
correlation length diverges. Strictly speaking, for an king-like system with short-range 
interactions, a given coarse-graining procedure generates a flow in Hamiltonian space 
whose [critical) fixed point is at a value of the nearest neighbour ( N N )  interactions 
diiiereni From the 'bare' criticai vaiue For spins at the iaitice spacing, and proiiferaiion 
leads to other types of couplings as well [lo]. In other words, the critical temperature 
for the coarse-grained spin variables is now different from, say, the Onsager value, in 
the case of the Ising spin system; less or more, depending upon the sign of the fixed 
point values of the next nearest neighbour [NNN) ,  four-spin, etc couplings generated 
[lo, 111. We are assured, however, that at the fixed point there will only be two relevant 
bGd,,,,g 'ICIUS ,,,,,car u J , I I u L l l a u u I I ~ ,  IGoyr;crr"cry, U1 LLlC UUU allu S"S11 cvup,,,,gs,, u,,c 

like an external field and the other temperature like [lo]. 
In the discussion that follows, we present an Ornstein-Zernike-like expansion [12] 

for the matrix elements of the FST at a generic length scale, where in place of the direct 
correlation function there appear the correlation functions computed over the "-bonds 
connecting a site to occupied neighbours. In this computation, we will take the bare 
\,a!ue cc the 

(i) When the N N N  and higher-order couplings at the fixed point of the RG trans- 
formation are positive, neglecting them would mean that NN correlations would have 
to be corrected upwards at the critical temperature. Evaluating the N N  bonds at T y  
does precisely this, since in this case T? < T Y " .  

(ii) When the higher order couplings at the fixed point are negative, neglecting 
them W O U ! ~  mean that ?he NN correlations would have to be corrected downwards at 
the critical temperature. Now T y " <  T? and using the bare critical value of the 
N N  bonds again has an effect in the right direction on the N N  correlations. From this, 
it is clear how the general case can he argued. 

In essence, therefore, our scheme of restricting the couplings to the hare ones but 
renormalizing the N N  correlations by summing Over different connecting paths seems 

.--a:-- C-1.l- ,I:.."-- --.-!-:--*:--- _^^^^^&:..-,.. ^F.L^ " A A  ....A " ^ ^ . . _ I : _ _ _ ,  --- 

ccl?p!ir?g, \./hi& czfl be jLS!ifed in the fe!!ewin" mnnner. e , 
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to effectively take into account some featurcs of the proliferation one would expect 
when dealing ,with coarse-grained variables. 

We now present an explicit calculation along the lines of the open-closed treatment 
of the boundary conditions as discussed in [Z]. 

2.1. ‘Open’ boundary conditions 

we start by considering intersections oftype i ana 2 bordered by ‘empty‘ sites. (‘Open‘ 
boundary conditions, cf [ l ,  21.) 

In figure 2 we show an intersection of type 1 belonging to an infinite connecfed 
cluster. This connectedness property is ensured by the transverse ‘backbone’ of occupied 
sites [3]). We would like to compute the probability MI,> that the grey site is occupied. 
Notice that the grey site is neighboured by two empty sites and an occupied one. We 
first ask the question whether its fourth neighbour belongs to the cluster or not. Then, 
according to the outcome of this question, we compute the probability that the grey 
site itself belongs to the cluster. This ‘flow diagram’ is illustrated in figure 2, and yields 

A Erzan and L Pietronero 

... 

wy” = PIP2 + (1 -PI )P,  . (1) 

Here we take pk to be the conditional probability for a site to be ‘up’, given that k of 
its neighbours are ‘up’, or belong to the connected cluster. Note that in figure 2(c ) ,  
for example, the absence of the bond between sites 1 and 2 has led to the formation 
of a vacancy at site 2. The subsequent probability for the occupation of the grey site 
is to be computed given one occupied (up) neighbour, and not two neighbours, one 
of which is up and the other down. 

We make a rough estimate of pk neglecting all but the N N  correlations, 
ekKc 

p. = 
J 

where the king Hamiltonian is -X/k,T = K Xes, m,u,, q = *l, and the Onsager critical 
point is at K , = f l n ( f i + l ) .  

6: 
Figure 2. The ‘Row diagram’ for the computation of the  matrix element M:,T (see text). 
Successive bonds over the connected paths leading to the growth site (prey) are shown as 
full liner. Broken lines from the bond end to its occupied NN indicate interactions that 
contribute to the computation of the bond probability. 
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From figure 3 we can analogously write down the probability that a type 2 config- 
uration is followed in the transverse direction again by a type 2 configuration, namely, 

(3) 

= 0.810 65 M2,2 = 0.910 18. (4) 

c l = E M . . C .  I’ J ( 5 )  

M??” =Pip3 + ( 1  -Pi)P>. 

From (1)-(3) we get 

By definition, Ma, ,  = 1 - M,, , ,  M2, ,  = 1 - M2.2 and the fixed point of the transformation 

is given by 

The fractal dimension of the cluster is 

ln(2- C , )  
In 2 ’ 

D = 1 +  

Using our lowest order results (4), we find 

Dopen = 1.9262 

for open boundary conditions only [2]. 

(7) 

2.2. ‘Closed’ boundary conditions 

We could also compute the matrix M for the case that the segment of the interesecting 
strip we consider is bordered on the right by sites that also belong to the cluster (are 
occupied). The flow diagrams for configurations of type 1 and 2 are shown in figures 
4 and 5.  We find 

MS”d = p,{p,[ p2p3 + ( 1  - p * )  p21 + (1  -PI )[ PIP,  + (1 -pd p21) + (1  - PI ) M y ”  
( 9 )  

ME[yd=Pt{PtP2P4fPi(1 -P2)P3+ ( 1  - P I ) P I P ~ +  (1  -PI)$3]+(1 -pl)‘;,y. 

go 0 
Figure 3. Diagram far the computation of the matrix element M;j;”. 
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Figure 4. Diagram far the computalion of the matrix element M;!Yd, 

Figure 5. Diagram for the computation of the matrix element M i Y .  The branchings over 
the paths (a)-(d) are identical with those in figure 4. 
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With p x  as given in equation (2), we have 

M;!Fd = 0.9484. (10) 

Dcioscd  = 1.959 ( 1 1 )  

Mclosed - 
,,2 -0.8869 

The resulting fractal dimension is 

for closed boundary conditions only [2]. 
It has previously been discussed in great detail [ l ,  2, 131 that one may compute the 

probabilities that segments on the intersection set are neighboured by vacant or 
occupied cells in terms of the probabilities C,, C,. This enables us to compute the 
properly weighted matrix elements within the so-called open-closed approximation 
[2] and a new fixed point for C,. With [ l ,  21 

the solution for the fixed point is 

where 
A =  MdOled+M;l;lred-Z(Mopen 

1.2 2 , . 2 + M ; p ; " ) .  

Using (lo), we find in the self-consistent 'open-closed' approximation, 

D = 1.957. (14) 

To make sure that our successive approximations are not going astray we have also 
computed larger diagrams where the occupacy of not only the N N  but also the N N N  

in the vertical direction of our chosen site was checked, before its probability of 
belonging to the cluster was finally computed. The flow diagram for the open boundary 
case conditionai io a configuraiion of iype i, is iiiusiraied in Bgure 6 .  

The matrix elements are 

W Y Y I I )  = (1  -Pi)MF'(I)+P,[(l -PJPI+P:I 

M;T(II) = (1 - P I  1 M'FYI) + PI [ P Z P ~  + ( 1  -PZ)PJ 
(15) 

M$YII)=(I  -PI)M,",P'"(II )+P,{P, [P , [P ,~ .+( l -P2)~j l+( l -P , )  

x [ P , G + ( l  -P , ) i j l l+ ( l  -P,)[P,f i j+(l  -P,)rzJll j = 1 , 2  

where I and I1  denote the lowest- and higher-order computations respectively, and 

c. =p,p2+j + ( 1  -P , )P l+I  

Ej = P2P2+j + ( 1  - P J P l + j .  

I-.... +(I-")" 1 1 1 \  
~ j - Y I Y 2 + J  \ YIIYI+, \."I 

The fractal dimension for the open and closed boundary conditions are 

(17)  Dclosed  - Dyp'" = 1.9337 - 1.9634 
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.1P, .Is 

E E  
Figure 6. Diagram for the computation of higher order corrections to M’;P;”. 

- 2  

Figure 7. Examples of a class of diagrams that should also be included for a systematic 
expansion of the matrix elements. 

which nicely bracket the desired value. The open-closed self-consistent approximation 
to this order is given, from (21, (13), (15) and (16). to be 

D,,= 1.961. (18) 

It should be noted that in this order the device of ensuring connectedness in the 
cluster by inserting a straight backbone tends to overestimate the matrix elements Mj,>. 
As illustrated in figure 7, at this order there are alternative paths by which site ‘2’ 
neighbouring the grey site could be connected to the cluster, without site ’I’  being 
occupied. Thus our ‘higher order’ computation with a Bow diagram as in figure 6 is a 
‘worst case’ scenario for how big the contribution from successive orders could be. 

3. Generalization to the Potts case 

The generalization to the q-state Potts model, now with connected clusters of identical 
spins, is straightforward. The Potts Hamiltonian is 

- H l k s T = q K  C a , ,  
( S )  
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where 8 denotes the Kroneker delta and the critical coupling is given by exp(qK,) = 
l+G. At the critical point, the conditional probability for a spin with k NNS that are 
members of the connected cluster, to also belong to the cluster is 

e9% 

Pk=eq*Kc+q-l (19) 

to the same approximation as in (2). The flow diagrams for the evaluation of the matrix 
elements, and, eventually, the expression for the matrix elements in terms of pk are 
identical to the calculation for the king case, so we just report our results in table 1. 

Table I .  Fractal dimension D of the critical Iring, Potts clusters. Here xM is the magnetic 
exponent at the tricritical paint of the dilute (4- 1) state Potts model. 

FST reS”ltS q = 2 (Ising) q = 3 q = 4  
~~ 

Open (1) 1.9262 1.8736 1.8328 
Closed ( I )  1.9597 19258 1.8969 

Open-closed (11) 1.9612 

2-x, 1.9479 1.9250 I9047 

Open-closed ( I )  1.9570 1.9181 1.8841 

The exact value for the fractal dimension of king clusters in two dimensions has 
been argued by Stella and Vandezarde [5] to he D = 2 - xH, where xH is the magnetic 
exponent associated with the tricritical point of the q = 1 Potts model, which happens 

scheme [14]. Duplantier and Saleur [7] use a direct mapping of the problem onto the 
O ( n )  model (with n = 1 )  at its critical point, from which they are able to extract the 
same xH. They moreover point out [7, 151 that there is a geometrical equivalence 
between the low-temperature phase of the O ( n )  model and the q = n 2  critical Potts 
model, as well as between the critical O ( n )  model and the tricritical point of the q = n z  
Potts model. 

Although the equivalence between the critical cluster problem and the O ( n )  model 
holds only for n = 1, the fractal dimensions computed from the FST are numerically 
very close to 2 -xH, where xH is the magnetic exponent for the tricritical point of the 
dilute q = 2 and the q = 3 Potts models, as can be seen from table 1. 

to fa!! into the same class as the !sing cri!ica! p i n !  under the ccnforma! c!assific2!ia. 

4. king and Potts ‘droplets’ 

It has been pointed out by Coniglio et a1 [8,9] that the fractal dimension of Potts 
‘droplets’ are given in d = 2, by 

where x;l is now the magnetic exponent at the critical point of the q-state Potts model 
(or the ‘dense’ state of the O ( n )  model with n = &, by virtue of their geometrical 
equivalence [7,15]). 

‘Droplets’ as opposed to ‘clusters’ are made up of N N  sites that have an expectation 
of being in the same state over and above that coming from pure chance. Since in a 



1884 

q-state model any two spins have a l / q  probability of being in the same state by 
chance, it is customary to define the ‘subtracted‘ N N  correlation function 

A Erzan and L Pietronero 

where ( . . .) is the thermal expectation value. Likewise we may define subtracted 
conditional probabilities J j k .  

that a spin is in the same state as its k identical nearest neighbours, over and above 
the probability that it is so by pure chance. From (19) we see that 

We have repeated the same procedure as outlined in section 2, with Jjk substituted 
for the p k ,  We report our results in table 2, together with the known exact values for 
the fractal dimension. As one considers higher order contributions to the FST [ l ,  2,3], 
improvement is slower than in the cluster case. Nevertheless, comparison with exact 
results seems encouraging. 

Table 2. Fractal dimension of the critical king and Pofts droplets. Here xb is the magnetic 
exponent at the critical point of the q-state Potts model. 

FST results q = 2  (k ing)  4 = 3  q = 4  

Open (1) 1.7678 1.7297 1.7004 
Closed ( I )  1.8396 1.8095 1.7852 
Open-closed ( I )  1.8153 1.7817 1.7525 
Open (11) 1.7806 
Closed (11) 1.8585 
Open-closed (11) 1.8414 

z-x:, v =  1.875 8= 1.8666 ?= 1.875 

5. Discussion 

It is worthwhile pointing out a number of connections and parallels between the present 
method and the renormalization group [ 10, 171, as well as a number of more traditional 
approaches. 

Let us denote by { n }  the lattice gas variables describing the king or Potts clusters 
in question. One may regard the renormalization group transformation as a way of 

requirements of scale invariance, once the universality class has been correctly iden- 
tified. The correlation function g ( r )  = (n,n,+,)  has the following asymptotic scaling 
behaviour as l / r+O at criticality, 

determlnixg the equl!$?hm &g&-!inn gnwfiifig !he ! a )  a! a i t i d i t y ,  using thc 
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where the primed quantities refer to the system scaled by a factor 1. The so-called 
magnetic scaling index y, is given by y ,  = In A , / h  l, when A, is the eigenvalue greater 
than 1 associated with the odd subspace of the renormalization group transformation, 
evaluated at  the appropriate fixed point. Then y, = 0, the fractal dimension of the 
clusters [18,5,8,9]. Note that y,+x, = d. For a given coarse-graining process, one 
may derive [lo, 191 a relation between A H  and the r$y,  components of the associated 
eigenvector in the odd subspace of the RG transformation. From the RG equation 

eC+z(n ' )  - - p(n' ,  n) e"'"' 
(") 

where G is the cell contribution to the free energy, and P(n' ,  n )  specifies the coarse- 
graining procedure, with P,,., P ( n ' ,  n )  = 1, one has the identity 

g'(+) = E n:,n; , (P(n' ,  n ) )  (24) 
I d 1  

where the expectation value is taken with respect to the unprimed Hamiltonian. Let 
P(n' ,  n )  be factorizable, as is usually the case, over the coarse-graining cells 

P ( n ' , n ) = n P i . ( n ' , n )  

and expand Py(n' ,  n )  over products of the primed and unprimed variables, such as 
single spin, N N  pair etc, 

J',(n', n )  = uabn.n; 
a. b 

where b runs only over the null set and single spin and vu,, are constant coefficients. 
inrn using ( L J J  ariu (L+J w e  LLIIU LIUJ 

1 &&? (25) 

where s stands for 'single spin' and Q, are simply related to uas. It should be recalled 
that the matrix elements-and thus also the eigenvectors-of the real space RG trans- 
formation are determined entirely in  terms of expectation values [IO; 171 of products 
of spins within a selected cell or adjacent cells, as a function of the interactions 
contained within this group of cells. The expectation values computed are conditional 
on the values of the transformed (primed) spins. Thus (25) relates D directly to the 
short-range conditional correlation functions entering into the RG transformation. 

-r..~. ,*-, .-A r.,"\ E - >  r*n,  

r$F = ,-'"-Y"' 
odd 

Let us now consider the scaling relation 

M (  r )  - l " - ' M ( r / l )  

where 

M ( r ) =  J n ( x )  (26) 
XSl(,) 

:- .L^ .-.-I ... :*I.:.. - - -" .I.- :..*a-"e,.*:-" ^_* r ^FtL.  ,.l.,"t.._ ... :.I. ,a LllC LVLa, 1,1650 W,,I.III n I r ~ l u "  V L  D lLC I U11 L..C I'IILI~C..LIUII ac, 1 ut U l C  ClUlLCL W l l , ,  

a ( d  - I)-dimensional manifold. Asymptotically, (as l / r +  0), this leads [ 1, 21, for d = 2 
and I = 2, to the following relationship for D in terms of the conditional expectation 
value over a cell at a generic scale, namely 

(27) 2D-' ( n , + n , ) , , = , =  
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where n' is the coarse-grained cell variable. The brackets denote an average over a yet 
undetermined distribution governing {n ) , .  The requirement that this distribution should 
he invariant under a translation in the transverse direction generates the FST. Finally, 
in close analogy to (25). equation (27) can be re-expressed as a relationship between 
the scaling index D and the elements of the eigenvector of the FST with unit eigen- 
value [ 1,2] 

A Erzan and L Pietronero 

C,+2C2=2D-' (28) 

(see equation (7)). 
In the non-interacting case, where all the expectation values can be computed 

exactly, we have checked that (24) and (27) lead to the same expressions, with the choice 

e.,( nj,, n )  = 1 - ( nk.+pi,)+2nj,p, 

pi. = n,(  i') + n2( i') - 2n,( i ')n2( i') 

where nx(i') refers to the kth site within the i' cell. 
We now turn our attention to the construction of the FST, which, for equilibrium 

models as in the present computation, follows formally along the lines of Glauber's 
[20] approach to the time-dependent statistics of the king model, with time now being 
replaced by y, the spatial dimension transverse to the intersection set. 

Let Cl,(S, y )  be the probability of a given configuration S of n on the intersection 
set, at a length scale 2'". We assume that the Cl do not depend on m at criticality, at 
least for sufficiently large m. Now we will consider a subclass of processes by which 
S can change under a translation in the y direction. In a cell of size 2"+' that belongs 
to the set, by definition there is at  least one site that is occupied. Define wj"'(1, n2)  
to he the rate per unit translation at  which n 2 ,  a site in cell i that is neighboured by 
an occupied site, changes its state (i.e. n , + ( n 2 + l )  mod,). We assume wi'"'(1, n 2 ) =  
w{'"'(n,, l), so we will just concentrate on the first process. Moreover, the w!'") are 
assumed to be independent of m. In general the wi may depend upon the values of 
all the n. The fact that we keep n,  fixed restricts us to a set of configurations where 
connectivity of the cluster is ensured in the transverse direction. We may now write 
down a 'master equation' for the desired probability distribution: 

d 
- - n ( S , y ) = - l n : ( l , n Z ) ~ ( ~ , y ) + l  w,(l,(n2+l)mod,)Cl(S',y) (29) 
dy 

where S' differs from S only in the second site of the ith cell. 
The 'transition rates' may he chosen to have the following form, 

WO, n2)  = n2T2, + (1  - T12 (30) 

where the Tj  may depend upon the values of all other n than n 2 .  By standard procedures 
we next obtain for the j th  cell, in obvious notation 

(31) 

where the expectation values are taken over n(S, y ) .  We have used the fact that n 2 =  n, 
n(  n + 1) mod, = 0 and that 

d 
-(I . n 2 ( j ) ) =  -(I. n2(j))V2,)+(T,,)-O d j ) ) (T ,J  
dy 

1 n 2 ( J ) T 1 2 W ' ) = 1  (1 - n 2 ( J ) ) T B 2 W )  
S s 
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since S' differs from S only in that n 2 ( j )  + ( n , ( j ) +  1) mod,. Moreover, by construction 
the '&, do not depend upon n. 

In the translationally invariant state we have, then 

This is identical to the fixed point equation ( 6 ) ,  if we notice that C , = ( l '  nJ. We now 
carry the analogy one step further by examining the cj, 

In equilibrium, the w are expected to satisfy 

where pj(l, n )  is the probability that the lattice gas variable at site 2 of the ith cell has 
the value n, given that site 1 is occupied, as a function ofthe surrounding configuration. 
Due to the form (30) the rj satisfy 

(33) 
_- T I 2  p(1 , (n+l )mod2)  
T2 I ~ ( 1 ,  n) 

- 

The p ( l , n )  are proportional to the Boltzmann factors exp(-H,/kT), where H ,  
now involves interactions not only between sites 1 and 2 inside the cell on the 
intersection set but also along paths that do  not lie along the chain. Our strategy is to 
expand them in a sum over linear paths connecting the sites 1 and 2, taking a product 
of the Boltzmann factors along each N N  bond, computed at the critical temperature 
of the underlying king spin system. In spirit, this is similar to the Ornstein-Zernike 
expansion for the correlation function [12], where one sums over paths of all lengths, 
taking products of so-called 'direct' (or short-ranged) correlation functions along the 
paths, with a configurational average being then taken over the intermediate vertices. 

Finally, it should be noticed that (see figures 2-6) we have imposed a further 
constraint on the configuration sums appearing in (31) or (32) by requiring that the 
connectivity in the transverse direction be maintained in the second, third,. . . ,steps. 
These configuration averages also include the properly weighted contributions from 
'open' and 'closed' boundary conditions. 
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